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ABSTRACT

The purpose of this review is to evaluate the current
modalities available for the assessment of fetal cardiac
function. The unique anatomy and physiology of the
fetal circulation are described, with reference to the
difference between in-utero and ex-utero life. M-mode,
early/atrial ratio, myocardial performance index, three-
dimensional and four-dimensional ultrasound, tissue
Doppler including strain and strain rate, speckle tracking,
magnetic resonance imaging and venous flow assessment
are described. The modalities are analyzed from the
perspective of the clinician and certain questions are
posed. Does the modality assess systolic function, diastolic
function or both? Is it applicable to both ventricles?
Does it require extensive post-processing or additional
hardware, or does it make use of technology already
available to the average practitioner? The reproducibility
and reliability of the techniques are evaluated, with
reference to their utility in clinical decision-making.
Finally, directions for future research are proposed.
Copyright  2012 ISUOG. Published by John Wiley
& Sons, Ltd.

INTRODUCTION

The purpose of this review is to analyze the current
modalities available for the assessment of fetal cardiac
function. The fetal heart differs from the ex-utero heart
in both structure and function. The fetal heart represents
two circulations, which effectively run in parallel, with
two ‘shunts’ connecting them, i.e. the ductus arteriosus
and foramen ovale. In ex-utero life, the two circulations
are referred to as pulmonary and systemic; however,
in the fetus this distinction is somewhat euphemistic,
and it may be more accurate to discuss right and left

circulations, a concept highlighted by Kiserud et al.1.
Although studies disagree on the exact figure, there is
a broad consensus that the fetal heart (in both the human
and lamb model) exhibits right-sided dominance, with
the majority (52–65%)2–5 of cardiac output (CO) going
through the right ventricle (RV). Of the right ventricular
output the majority (756 –90% )4–6 is shunted through
the ductus arteriosus to the systemic circulation. Thus, it
is reasonable to say that in the fetus the RV is a systemic
ventricle.

Extensive investigations in developmental anatomy
show that the myocardial architecture is organized as
myocardial muscle fibers running in geodesic curves
around toroid (doughnut-shaped) nested layers. In addi-
tion, fibers penetrate from the epicardial to endocardial
layers at oblique angles to the surface geodesics. The
right and left ventricles differ in the arrangement of their
respective nested tori; while the left ventricle (LV) follows
a more regular arrangement, the RV torus is stretched and
bent to bring the pulmonary orifice forward and left of the
aortic orifice. The interface of the right and left tori creates
the muscular septum. The entire heart can be envisioned
as ‘a nested set of warped pretzels’7 and the seminal paper
by Jouk et al.7 provides a detailed description.

Cardiac form develops to serve function8. The heart
begins as a primitive tube, and the first contractions
are seen at approximately 22 days in the human9.
Next, the tube transitions to a looped heart. Soon
afterward morphological differentiation of myocardium
begins and chambers are formed. Finally, these stages are
completed with the process of septation8. The geometry
of the cardiac ventricles develops through the course
of gestation; the myocardium undergoes a process of
progressive compaction as coronary circulation develops
and tissue can no longer be supplied by diffusion alone.
As this ventricular architecture develops, so does the
electrical excitation sequence. Activation follows blood
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flow, proceeding toward the outflow portion of the
ventricle. As the trabeculae develop, they are activated
first. Activation spreads from this interior tissue outward.
In the mature trabeculated heart, activation proceeds
apex-to-base10.

The right and left sides of the heart are in no way
mirror images of each other. The atria are most accurately
differentiated by the extensive distribution of the pectinate
muscles in the right atrium, as opposed to their relative
absence in the left atrium11; however, the constraints of
ultrasound resolution mean that the atria are usually
classified as right or left morphology, based on the
pulmonary and systemic venous connections. The RV
is trabeculated; in particular the ‘moderator band’, a
prominently thickened trabeculation, is a sonographic
landmark that identifies the RV. The RV is also
shaped more like a banana, with the pulmonary and
tricuspid valves at each end. The LV is shaped more
conically, like a ‘ballerina’s foot’, and is lined with much
finer trabeculations, making it appear smooth-walled on
ultrasonography12. The ventricles are also differentiated
by their respective atrioventricular valves: the RV has
the three-leaflet tricuspid valve, as opposed to the two-
leaflet mitral valve of the LV, although the three leaflets
may not be clearly distinguishable during early fetal
echocardiography. Also, the septal leaflet of the tricuspid
valve joins the interventricular septum more apically than
does the mitral valve11,13.

Despite these anatomical differences, Johnson et al.14

examined intracavitary pressures in 33 second- and third-
trimester fetuses undergoing clinically indicated invasive
obstetric procedures. The investigators found that the
resulting waveforms were similar to those obtained in
postnatal life. Both the LV and RV waveforms showed a
small atrial component and rapid increase during systole,
followed by a rapid decrease in diastole. Systolic and
diastolic pressures increased linearly during gestation.
There was no significant difference between left and
right intraventricular pressures. The mean systolic and
diastolic pressures measured approximately 20 mmHg
and 5 mmHg at 20 weeks’ gestation, respectively. Mean
atrial pressure was approximately 3.4 mmHg in the
left atrium and 3.6 mmHg in the right. No significant
change was noted in intra-atrial pressure over the
course of gestation. The authors concluded that changes
in ventricular pressure mirror those seen in studies
performed in fetal lambs and premature newborns of
similar post-conceptional age at measurement. Such
changes may correspond to those observed as resulting
from the maturation of myocardial contractility in animal
models14.

The orientation of the heart in the fetus differs from
that in ex-utero life. The apex of the heart is displaced
cranially by the relatively large liver, at least through the
second trimester. This means that the long axis of the LV
is more horizontal in the fetus than in the neonate15. It has
also been shown that the geometry of the heart and great
vessels changes during gestation. The angles between the
ductal arch and fetal thoracic aorta, the ductal arch and

aortic arch, and the left outflow tract and main pulmonary
artery all change throughout gestation and this may have
ramifications for the geometrical assumptions used in
volume calculations16.

The fetal heart also reacts to damage differently from
the adult heart, responding with myocyte proliferation in
addition to hypertrophy17–19. Perhaps, for these reasons,
deterioration in clinical measure of cardiac function may
often be the first sign of fetal pathology20. Therefore,
the development of sensitive methods of quantifying
fetal cardiac function is of extreme importance, with
a particular emphasis on the RV, as this is effectively
the systemic ventricle of the fetus. With the incidence
of congenital heart disease now seemingly higher than
was previously thought, in particular in the neonatal
intensive care unit population21, the importance of
tracking function along a time axis becomes critical for
the timing of fetal interventions and other management
decisions.

CARDIAC FUNCTION: BASIC PRINCIPLES

Although a detailed survey of all components of normal
cardiac pump function is beyond the scope of this review,
it may be timely to delineate briefly the main features.
The two pumps, left and right, are each made up of an
atrium which receives venous blood and a ventricle which
ejects blood into an arterial system. Once the pressure in
the ventricle has fallen beneath the pressure in the atrium,
the atrioventricular valve opens and blood enters the
ventricle, at first passively and later actively, because of
atrial depolarization and contraction (the so-called ‘atrial
kick’). The terms ‘active’ and ‘passive’ of course refer to
the macroscopic appearance, although both processes are
active at the molecular level.

The atrial contribution to CO becomes more signifi-
cant as heart rate increases, owing to the shortening of
the passive ventricular filling time that occurs as heart rate
rises. The atrial kick is one mechanism to ensure efficient
ventricular filling across a spectrum of heart rates. Simi-
larly, the sympathetic nervous system, while responsible
for the positive chronotropic effect, also causes a decrease
in the action potential duration, as well as an increase in
the rate of cardiac relaxation, thereby reducing the loss
of passive ventricular filling time at higher heart rates.
As the ventricle depolarizes and contracts, pressure rises
steeply within the ventricle, causing the atrioventricular
(AV) valve to close. Then follows the period of isovol-
umetric contraction within the ventricle, leading to an
increase in pressure, until the pressure in the ventricle
exceeds that in the aorta or pulmonary artery, causing the
semilunar valve to open and blood to be ejected forcefully
into the arterial circulation. Eventually the ventricular
pressure recedes, as the force of contraction decreases.
Once ventricular pressure falls beneath arterial pressure,
the semilunar valve closes. The time interval between
the semilunar valve closing and the AV valve opening is
known as the isovolumetric relaxation phase. The atrium
fills continuously throughout ventricular systole, causing
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a gradual increase in atrial pressure until this exceeds
ventricular pressure, at which point the AV valve opens
and the cycle begins again. Although there is some debate
in the literature, for the purposes of this article, systole
comprises isovolumetric contraction and ventricular ejec-
tion, while diastole comprises isovolumetric relaxation
and ventricular filling22.

DETERMINANTS OF STROKE VOLUME:
PRELOAD, AFTERLOAD AND
CONTRACTILITY

Stroke volume, the amount of blood ejected by the heart
in a single beat, is principally determined by three factors:
preload, afterload and contractility. The pressure within
the ventricle at the end of diastole is referred to as the
ventricular preload, as this is a major determinant of
the ventricular volume and therefore of cardiac muscle
fiber length. Starling’s law of the heart states that, in the
non-failing heart, the increased length of the muscle fibers
results in increased energy of contraction. In other words,
increased end-diastolic volume causes increased stroke
volume. Afterload refers to the pressure against which the
cardiac muscle fibers are shortening, and in fact is the
limiting factor that determines the extent to which they
are able to shorten. Thus, increased afterload results in
reduced cardiac muscle shortening and, therefore, reduced
stroke volume. Systemic blood pressure is usually taken as
a surrogate marker of afterload. Finally, the contractility
(ability to shorten) of the cardiac muscle itself is controlled
by the sympathetic nervous system. Noradrenaline release
causes increased contractility of the fibers, for any given
preload, causing increased stroke volume.

Over the years many parameters have been proposed
in an attempt to quantitatively evaluate cardiac function.
Most were first developed for adult heart evaluation and
were adapted to the fetus. Some are based on Doppler flow
mapping, others on heart biometry or on timing of cardiac
cycle events, or a combination of these three. They include
stroke volume (velocity time integral × valve area), CO
(stroke volume × heart rate) and ejection fraction (EF)
(stroke volume ÷ end-diastolic volume). Others are the
shortening fraction ((end-diastolic ventricular diameter
− end-systolic ventricular diameter) ÷ end-diastolic
ventricular diameter); myocardial ejection force ((1.055 ×
valve area × velocity time integral of acceleration) × peak
systolic velocity ÷ acceleration time); and myocardial
performance index (MPI) ((isovolumetric contraction time
+ isovolumetric relaxation time) ÷ ejection time). These
formulae are summarized in Table 1. As in evaluation of
pediatric and adult heart function, any cardiac biometry,
and functional measures based on heart or vessel
dimensions, will necessarily correlate with body size.

Stroke volume (SV) is a calculation of blood flow out
of the heart at systole. However, measurement of the
ventricular volume is cumbersome. In the left heart, there-
fore, SV is based on measurement of diameter of the
aorta at the valve annulus to determine valve area, multi-
plied by flow across the annulus, represented by the time

Table 1 Formulae for fetal cardiac functional evaluation

Index Formula

Stroke volume (SV) velocity time integral × valve area*
Cardiac output (CO) SV × heart rate
Ejection fraction (EF) SV ÷ end-diastolic volume
Shortening fraction (SF) (end-diastolic VD − end-systolic VD)

÷ end-diastolic VD
Myocardial ejection force (1.055 × valve area × velocity time

integral of acceleration) × peak
systolic velocity ÷ acceleration
time

Myocardial performance
index (MPI)

(ICT + IRT) ÷ ET

*Aortic or pulmonary (see text for details). ET, ejection time; ICT,
isovolumetric contraction time; IRT, isovolumetric relaxation time;
VD, ventricular diameter.

velocity integral. Right SV is calculated from the diame-
ter of the pulmonary artery. Any inaccuracy in diameter
measurement will introduce considerable error into the
calculation, since this number is squared to obtain the
valve area. Thus, SV is necessarily an indirect measure
of the blood volume exiting the ventricle. CO is SV
multiplied by fetal heart rate. Mielke et al.3 examined
SV and CO in 222 fetuses from 13 weeks’ gestation to
term. They showed that SV increases exponentially as
gestation progresses. Median biventricular CO ranged
from 40 mL/min at 15 weeks up to 1470 mL/min at
40 weeks; the median CO per fetal weight was 425 mL
× min−1 × kg−1 and the median right/left CO ratio was
approximately 1.4, remaining stable throughout gestation
and underscoring right heart dominance in the fetus3.
Three-/four-dimensional ultrasound (3DUS/4DUS) tech-
niques to evaluate fetal heart function often are used to
determine fetal ventricular volume, to enable direct quan-
tification of fetal SV and CO and this is discussed below.

M-MODE

M-mode echocardiography is the study of two-
dimensional motion of all structures along an ultrasound
beam over time. It was first described for assessment of
cardiac function in 1971 in adults23, and normal values
in the fetus were published in 198224. It allows for calcu-
lation of the shortening fraction, the change in ventricular
diameter between end diastole and end systole as a ratio of
the end-diastolic diameter, which is a long-standing surro-
gate for function25. Disadvantages include the difficulty in
obtaining the correct view in a fetus, a line perpendicular
to the interventricular septum at the level of the AV valve
leaflets26, depending on fetal lie (Figure 1). However, it is
used as a component of other techniques, most notably
annular displacement (see below).

Annular excursion/displacement uses M-mode echocar-
diography to measure the maximal excursion of the
junction between the tricuspid annulus and the RV free
wall, from end diastole to end systole. It is a measure of
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Figure 1 M-mode measurement of end systole and end diastole
performed in a spatiotemporal image correlation volume. After
acquisition, the volume is adjusted to show the four-chamber view.
The M-mode cursor is placed perpendicular to the interventricular
septum (IVS). Arrows mark end diastole and end systole. LV, left
ventricle; RV, right ventricle.

RV function that has been shown in adults to have prog-
nostic significance independent of LV function27. In the
fetus, M-mode evaluation of annular displacement of both
the mitral and tricuspid valves is a feasible technique28,
and amplitude has been shown to increase with gesta-
tional age29. Annular displacement techniques essentially
use M-mode to measure long-axis function as opposed
to short-axis function, which is more commonly asso-
ciated with M-mode measurements29. This technique is
most suited to RV examination because of the longitudi-
nal orientation of the deep RV muscle fibers, as opposed
to the mainly circumferential arrangement of LV muscle
fibers29,30. This technique has the advantage of utilizing
M-mode technology that is readily available with modern
ultrasound machines. However, it has not yet been eval-
uated fully or compared with other methods of assessing
function in the fetus.

EARLY/ATRIAL (E/A) RATIO
(ATRIOVENTRICULAR FLOW)

The E/A ratio refers to the ratio of the two peaks in flow
velocity observed over the atrioventricular valves during
diastole. The E-wave is the early, passive diastolic filling,
which is dependent on ventricular wall relaxation. The
A-wave is the active diastolic filling known as the ‘atrial
kick’31. It is measured using pulsed-wave (PW) Doppler
echocardiography, with the cursor set on or just below the
AV valve (usually the mitral) in a four-chamber view. Ex
utero, under normal conditions, the E-wave is greater than
the A-wave. In the healthy fetus, the A-wave is usually
greater, although as gestation progresses, the E/A ratio
increases, approaching the ex utero values (Figure 2). It
is generally agreed that increase in the E/A ratio is due
to increasing E-wave velocity, while the A-wave remains
fairly constant throughout gestation, although there is
some dispute as to whether the velocity increases linearly
throughout gestation32,33 or only in the last trimester34.
The increase in E-wave is thought to result from improved
ventricular relaxation35. Since ventricular relaxation

Figure 2 Spectral Doppler trace of the E/A-wave in a 15-week
fetus (a) and a 35-week fetus (b), showing the progressive increase
in ventricular compliance during pregnancy.

allows for coronary blood flow36, it would be expected
that this too is increased throughout gestation; however,
experimental evidence so far has shown that coronary
blood flow remains constant throughout gestation37.

In adult life, reduction in the E/A ratio is a sign of
diastolic dysfunction, associated with poor prognosis in
patients with congestive heart failure38. In the fetus,
a reduction in both mitral and tricuspid E/A ratio
has been reported in recipient twins in twin–to–twin
transfusion syndrome (TTTS), along with other markers
of diastolic dysfunction39. However, other studies have
shown an increase in E/A ratio in situations of cardiac
compromise, including intrauterine growth restriction
(IUGR) and hydrops due to congenital cystic adenomatoid
malformation40,41.

It has been shown that the E/A ratio shows poor
correlation with isovolumetric relaxation time42,43 as
well as venous flow patterns44. However, the lack of an
objective reference standard for measuring fetal cardiac
function makes it difficult to compare one test with
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another, as each has its own methodological limitations.
Qualitatively, monophasic AV flow patterns, with
complete absence of the normal biphasic E/A morphology,
indicates severe CO pathologies, such as aortic stenosis45

and TTTS46, and is a poor prognostic indicator in cases of
IUGR47. This pattern should not be mistaken for fusion
of E- and A-waves that occurs physiologically at high
heart rates48. The E/A ratio has the advantage of allowing
measurement of both sides of the heart independently,
although it is a marker of diastolic function (Figure 2).

MYOCARDIAL PERFORMANCE INDEX

The MPI or Tei index is the sum of the isovolumetric
contraction and relaxation times, divided by the ejection
time. It was first reported as a measure of global cardiac
function in 199549. The index comprises both systolic
and diastolic components, and can be used to analyze
each ventricle independently. It has the advantage of not
requiring a detailed anatomical survey in order to analyze
function50. It is obtained by echocardiographic evaluation
of the flow patterns through the AV valves and outflow
tracts. The ejection time is measured as the duration of
flow through the outflow tract, e.g. aortic valve. The
isovolumetric contraction time is the interval between
cessation of AV valve flow and the onset of outflow tract
flow. The isovolumetric relaxation time is the interval
between cessation of outflow tract flow and the onset
of AV valve flow. The flow patterns are usually obtained
with PW Doppler, but can also be obtained using M-mode
and tissue Doppler imaging (TDI). As it utilizes only time
intervals, it is independent of heart rate and ventricular
structure 20,51. Its use in fetal echocardiography was
first reported in 1999, when Tsutsumi et al. showed
that the Tei index can be used in fetuses, and that
there is a decrease in the Tei index of both ventricles

Figure 3 Myocardial performance index (MPI) measured by valve
clicks in the Doppler trace. MPI = (ICT + IRT) ÷ ET. Caliper
placement is indicated by dotted lines. ET, ventricular ejection time;
ICT, isovolumetric contraction time; IRT, isovolumetric relaxation
time.

during gestation, with a transient increase immediately
after birth52. Subsequently, it was suggested that the use
of ‘clicks’ could help standardize the boundaries of the
isovolumetric waveform durations. These clicks represent
the Doppler echoes from the closure of the mitral and
aortic valves, and provide a convenient objective standard
for defining the boundaries of valvular flow (Figure 3).
Thus, Hernandez-Andrade et al. demonstrated reduced
inter- and intrauser variability with the incorporation
of clicks into the calculation of the Tei index53. Using
this ‘modified MPI’, they then demonstrated, contrary to
Tsutsumi et al., that there is a slight increase overall in
the LV Tei index from gestational week 19 onwards, with
isovolumetric relaxation time increasing, ET decreasing
and isovolumetric contraction time remaining constant54.
These results are also contrary to those of van Splunder
and Wladimiroff in 1996, who essentially measured the
same variables, although not referring to the Tei index,
and found that left ventricular ET and isovolumetric
relaxation time both decrease with gestational age55, with
no significant change in isovolumetric contraction time,
admittedly with a much smaller number of subjects than
were included in the study by Hernandez-Andrade et al.
(52 vs. 557, respectively). Van Mieghem et al. showed
the Tei index to correlate well with the EF in the
fetus, with the advantage of less inter- and intraexaminer
variability, thus validating the use of the Tei index in fetal
echocardiography. Interestingly, they found no significant
correlation between the E/A ratio and the Tei index, as
well as no change in the Tei index with gestational age56.

The Tei index as measured in the fetus has advantages
over its application in the adult heart. Friedman et al.
showed that in the fetus one can measure the mitral and
aortic valve flows simultaneously50, thereby removing the
inaccuracy involved in measuring the time intervals across
different heart beats. However, the right-sided valves, due
to their different anatomical configuration, cannot be cap-
tured simultaneously. Perhaps for this reason the right side
is less frequently included in MPI research. However, as
has been mentioned, in adult cardiology, where the MPI
was first utilized, neither side can be assessed simulta-
neously using flow Doppler techniques51. One technique
to minimize the inaccuracy induced by measuring time
intervals across different heart beats is taking the average
of the MPI as obtained across several heart beats52. The
application of tissue Doppler techniques to the MPI has
been shown to enable simultaneous appraisal of inflow
and outflow, both in the fetus57 and adult58. However,
there is not yet a consensus that TDI and pulsed-wave
Doppler evaluation of MPI give the same results59.

The MPI has been widely studied in a number of fetal
pathologies. In TTTS the MPI has been shown to be
pathological in the recipient twin, due to a prolongation
of the isovolumetric relaxation time, implying diastolic
dysfunction60. This is in contrast to results in fetuses
suspected of suffering from fetal inflammatory response
syndrome due to infection secondary to premature rup-
ture of membranes. In the latter case the MPI is also
increased, implying reduced function, but the increase is
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due to a shortening of the ejection time, the denominator
of the Tei index formula61. In fetuses with homozygous
α-thalassemia (Hb Bart’s fetal edema), a cause of fetal
demise with progressive cardiac dysfunction, the MPI
is elevated as early as week 20, long before ventricular
and atrial enlargement occur57. The Tei index has also
been shown to be elevated in hydrops fetalis, as well as
in large-for-gestational age fetuses of diabetic mothers62,
although the clinical significance of the latter finding is
not clear. Crispi et al. demonstrated an increase in MPI
with increasing severity of IUGR, with both diastolic and
systolic components affected, as well as an association
between increased MPI and fetal death41.

Thus, it has been shown that a raised MPI value is
a sensitive, albeit non-specific, marker of fetal cardiac
dysfunction. However, the Tei index has been shown
to have some limitations. Firstly, competence in the
technique itself seems to be somewhat challenging to
acquire, as demonstrated by Cruz-Martinez et al.63. It
takes on average 65 exams before the inexperienced
practitioner can achieve competence in this skill. This
limits the applicability of the Tei index to high-volume
referral centers, in which practitioners will be able to
develop and maintain competence.

There have also been certain clinical contexts in which
the Tei index has been shown to be unreliable. In a study
of adults with aortic stenosis and reduced LV function,
Sud and Massel showed that the Tei index remains
unchanged in severe aortic stenosis despite worsening
EF, and that the index paradoxically decreases as the
aortic stenosis gets more severe in patients with reduced
EF64. Using ROC curves, the index was shown to
be unable to identify accurately patients with reduced
LV function in the presence of severe aortic stenosis,
as well as patients with severe aortic stenosis in the
presence of reduced LV function. Another concern has
been raised regarding the use of the Tei index in
cases of pulmonary hypertension. The index has been
reported to correlate with pulmonary hypertension in
both adults65 and children66. Translating these concepts
to fetal medicine, the paradigm of increased fetal RV
afterload is ductal constriction. Mori et al. found the
Tei index to be increased in cases of ductal constriction,
and suggest that it can be used as a sensitive marker of
RV dysfunction in this condition48. However, concerns
have been raised as to the legitimacy of using time
intervals to assess function in pulmonary hypertension,
since time intervals are themselves related to RV afterload.
Thus, given an abnormal Tei index in cases of elevated
pulmonary artery pressure or ductal constriction, it may
be that the index is caused by the elevated afterload, and
not directly by RV myocardial dysfunction67. Similarly,
Cheung et al. found that the Tei index was not sensitive
to dobutamine infusion in anesthetized pigs, but was
sensitive to changes in preload and afterload68. This
is in contrast to the results published by Eidem et al.
which showed no effect of loading conditions on the
Tei index in adults and children with congenital heart
disease before and after surgery69. As such, it has been

suggested that the Tei index be viewed as a ‘sedimentation
rate of the heart’, an indication of pathology, with
perhaps limited ability to reflect causality69. However,
the reproducibility56 of the MPI, as well as its sensitivity,
make it, in the opinion of the authors, an important
tool in fetal echocardiography, including the timing of
interventions.

THREE- AND FOUR-DIMENSIONAL
ULTRASOUND

3DUS/4DUS technologies have been used over the last
decade to evaluate fetal cardiac function, chiefly with the
aid of spatiotemporal image correlation (STIC)70. STIC
is based on a sweep of the fetal heart comprising the
five transverse planes approach71, and delivers a volume
dataset containing a complete reconstructed cardiac cycle,
made up of approximately 1500 images. The operator can
navigate both spatially and temporally within the saved
dataset. Thus, for example, the four-chamber view at
end diastole and end systole can be identified by valve
movement, and from these starting points either manual
or semi-automated volume measurement of the cardiac
ventricles is possible. The studies of 3DUS/4DUS applied
to fetal heart function evaluation are based primarily on
cardiac ventricular volumetry and cardiac valve clicks.
The goal of all these methods has been extrapolation
of fetal stroke volume, EF and CO from the resulting
ventricular volumes72–76 (Figures 4 and 5).

Manual volumetry based on STIC volumes obtained
by segmentation was studied by Uittenbogaard and
colleagues75. The ventricles are manually traced in mul-
tiple serial slices 1 mm apart; these were obtained by
scrolling through the saved volume in multiplanar recon-
struction, and Simpson’s rule was applied75. Alterna-
tively, semiautomated segmentation involves specialized

Figure 4 Ventricular volume measured with Virtual Organ
Computer-aided AnaLysis (VOCAL). The application is opened
and the operator traces the ventricular borders at a preset number
of planes as the system rotates around a fixed axis. The system then
computes the contour of the measured organ, in this case the
cardiac ventricle (lower right frame).
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Figure 5 Ventricular volume calculated using Virtual Organ
Computer-aided AnaLysis (VOCAL) combined with inversion
mode (IM). The addition of IM helps to isolate the fluid-filled
intracardiac volume from the papillary muscles and the ventricular
walls and septum.

Figure 6 A case of pulmonary stenosis evaluated with Virtual
Organ Computer-aided AnaLysis (VOCAL) and inversion mode.
The right ventricular volume, normally greater than that of the left
in the fetus, is markedly decreased.

algorithms applied to the STIC volume72–74,76–78. Vir-
tual Organ Computer-aided AnaLysis (VOCAL), which
measures the volume of a defined area by reconstructing
planes around a fixed central axis, is initiated and the
volume of the organ of interest is determined (Figure 4).
VOCAL may be combined with inversion mode (IM)73,
which isolates fluid-filled areas (black) from tissue (gray)
and inverts their representation (Figure 5).

We found that ventricular volumetry successfully
differentiated between normal and anomalous hearts. For
example, Figure 6 shows a case of pulmonary stenosis
at 32 weeks’ gestation, with RV volume significantly
decreased from the mean (RV end-diastolic volume
measured 0.7 (mean, 2.71) cm3 and RV end-systolic
volume measured 0.37 (mean, 1.34) cm3, both below
the 5% CI for the mean for gestational age)73. We
extended the combination of VOCAL and IM used for

ventricular volumetry73 to calculate ventricular mass.
Applying the algorithm we were able to deduct the
intraventricular volume from the total ventricular volume
automatically, the remainder being the volume of the
myocardium. This was multiplied by estimated fetal
cardiac density (1.050 g/cm3)79 to obtain the mass80.
While these methodologies show promise for clinical
application, they are still in their infancy, requiring a long
learning curve and considerable operator expertise. If a
viable automated program for ventricular volumetry and
its related measures are introduced, making the techniques
less operator-dependent, they may provide additional
alternatives for fetal cardiac functional evaluation.

TISSUE DOPPLER IMAGING, STRAIN
AND STRAIN RATE

TDI refers to the application of Doppler principles to
the measurement of the velocity of the myocardium
rather than that of intracardiac blood flow (Figures 7
and 8). Since the cardiac apex remains relatively sta-
tionary throughout the cardiac cycle, analysis of the
motion of the mitral valve annulus relative to the apex
gives a good approximation of the longitudinal con-
tractility of the ventricle81. Pulsed-wave tissue Doppler
examination of the mitral annulus longitudinal motion
gives three waveforms: S′, the velocity of the sys-
tolic downwards motion of the annulus towards the
apex – a positive deflection waveform; E′, the velocity
of the early diastolic movement away from the apex – a
negative deflection waveform; A′, the velocity of the
movement of the annulus associated with atrial con-
traction – a negative deflection waveform. The prime (′)
notation is used to differentiate from the E and A wave-
forms of mitral Doppler inflow velocities; however, some
researchers prefer the nomenclature Sa, Ea and Aa, and
others use Sm, Em and Am. TDI measures the peak
velocity of the myocardial segment being interrogated,
unlike color TDI (see below) which measures the mean
velocity82.

Broadly speaking, S′ corresponds with LV systolic
function, and has been shown to correlate with EF
as measured by 3DUS83. Changes in the S′ waveform
have been demonstrated as soon as 15 seconds after the
onset of ischemia in experimental animal models84. E′
corresponds with diastolic function, and has been shown
to be less preload-dependent than the E/A profile85. It
can be combined with the mitral inflow, as the E/E′ ratio,
which is an even more sensitive measure of diastolic
dysfunction86. The A′ waveform has been shown to be
more sensitive than the AV valve inflow profile in detecting
atrial mechanical dysfunction87.

TDI of fetal myocardium was first reported as a feasible
technique in 199988. Since then there have been conflicting
reports as to its usefulness in the assessment of fetal
heart function. RV TDI alone could not differentiate
between fetuses with and without heart failure, although
incorporating TDI into other techniques – the E/E′ ratio,
and use of TDI to measure the Tei index, did differentiate
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Figure 7 Axial pulsed-wave tissue Doppler echocardiography of the
right ventricle showing velocities in systole and diastole.
Aa, movement of the myocardium associated with atrial
contraction; Ea, velocity of early diastolic movement away from the
apex; Sa, systolic downwards motion of the myocardium towards
the apex. (Image courtesy of Prof. Jack Rychik).

Figure 8 Left ventricular velocity vector image. On this still frame
of the left ventricle, the length of each arrow represents the velocity
amplitude, while the direction reflects motion of the myocardium.
(Image courtesy of Prof. J. Rychik).

between the groups89. A more recent study showed a
significantly reduced LV-S′, as well as an increased E/E′
ratio and RV-S′/LV-S′ in a group of fetuses with hydrops
fetalis, as compared to normal controls90. Similarly, it
has been reported recently that TDI is more sensitive
than ‘conventional’ AV flow and MPI measurements
in detecting systolic and diastolic dysfunction in IUGR
fetuses91. It is unclear if there is any clinical significance in
the increased sensitivity of TDI in IUGR, e.g. if it marks
out a subgroup of fetuses that have a poorer prognosis.
Alternatively, TDI may be just a more sensitive technique,
picking out the lower end of ‘normal’, with no functional
or clinical significance.

The main disadvantages of PW-TDI are that it
can provide information about only one area of the
myocardium at any one time48 as well as being very angle-
dependent, i.e. only those areas of the myocardium that
are parallel to the angle of insonation can be analyzed92.
The application of color Doppler to TDI enables the
assessment of strain rate (change in length per unit
time), and, by mathematical derivation, myocardial strain
(change in length) itself93. These modalities have the
advantage of directly measuring myocardial segments, as
opposed to chamber-dimension changes, and thus should
reflect myocardial contractility more accurately20,29,40.
However, they suffer from the same drawbacks as
PW-TDI, namely angle dependency and assessment of
individual segments rather than global function.

SPECKLE TRACKING

A relatively recent approach to studying myocardial
motion as a surrogate for cardiac function is the use
of speckle-tracking techniques. These use 2D B-mode
echocardiography, and are based on identifying ‘speckles’.
Speckles are natural acoustic markers, spread randomly
throughout the myocardium, which are generated by
stable interference and backscatter of the ultrasound
signal80,94. These speckles are identified, and their
positions are noted in subsequent frames in a cineloop.
With the frame-rate a known quantity, the velocity vectors
for each speckle can be calculated and, thereby, the strain
and strain rate can be evaluated segmentally as well as for
the whole chamber. Speckle tracking is usually coupled
with an automated border recognition program, so that
speckle tracking occurs within the context of the ventricle
under investigation. This combination of software allows
for estimation of the EF as well as direct measurement
of strain and strain rate. Speckle tracking essentially
measures myocardial deformation (change of shape) as
opposed to the point changes in velocities measured by
TDI95.

Speckle tracking is limited, however, to speckles which
remain within the imaging plane throughout the cardiac
cycle. Speckles which pass through the plane of insonation
cannot be tracked, at least not by the majority of current
systems96. However, a recent study by Matsui et al.
has shown that speckle tracking, which requires offline
processing with dedicated software, is no better than is
M-mode for measuring annular displacement techniques,
which is readily performed on any modern ultrasound
machine97.

Perk et al. compared EF estimation by speckle tracking,
by applying the standard ‘Simpson’s rule’ (measuring end-
diastolic and end-systolic volumes manually) and by visual
examination by an experienced echocardiographer. They
found strong correlation among all three methods94. This
too begs the question as to the usefulness of a technique
which is equivalent to, but less accessible than, older
technology. The authors do not provide data about the
total time required to perform and process the speckle-
tracking studies as opposed to the M-mode assessment of

Copyright  2012 ISUOG. Published by John Wiley & Sons, Ltd. Ultrasound Obstet Gynecol 2012; 39: 131–144.



Functional assessment of the fetal heart 139

EF. Matsui et al.97 also noted that, conceptually, there is
a problem in applying color Doppler techniques to the
fetus, where the ratio of pixel to myocardial volume is
much higher than in the adult. This is presumably true of
speckle-tracking techniques as well. Also, the technique is
dependent on frame-rate of the ultrasound machine, and
it has been suggested that the frame-rates in most current
machines are too low to allow accurate speckle tracking in
the fetus. This is in part owing to the lack of ECG gating
in fetal echocardiography. The authors demonstrated that
interposing a metronome to artificially generate simulated
ECG spikes, thereby enabling the images to be stored
at a higher frame rate, caused an increase in successful
speckle-tracking acquisition97. As has been mentioned,
speckle tracking, as well as Doppler-derived measures of
strain, have the advantage of providing both segmental
and global functional information concerning both the
left and right heart in systole. Speckle tracking has not yet
been studied sufficiently for use in evaluation of diastolic
function, and the use of TDI for diastolic evaluation is
limited to certain subgroups in adults98.

MAGNETIC RESONANCE IMAGING

Since the advent of magnetic resonance imaging (MRI) in
the 1980 s as a research, and subsequently clinical, tool
it rapidly became an important adjunct for assessment
of cardiac structure and function (both systolic and
diastolic) ex-utero99. Fetal circulatory physiology and
many congenital lesions make accurate depiction of RV
structure and function critically important, and MRI is
currently considered the reference standard for ex-utero
RV assessment100,101. MRI, both in utero and ex utero,
enables measurement and calculations of ventricular
volumes and mass, as well as EF and CO/cardiac
index. Unlike ultrasonographic techniques, MRI is not
affected by maternal obesity or oligohydramnios102, and
image quality is not dependent on gestational age103.
Since it does not rely on assumptions, but rather
on true real-time measurements, it is useful for the
examination of abnormal hearts that do not conform
to the geometric models used in ultrasound techniques104.
Other advantages include better image quality and
structural detail105. Technical disadvantages include the
expense of the technique, the relatively long duration of
the examination (although this is reported to be as short as
15 minutes in some studies101) and the lack of availability
of both the technology and expertise to perform the
examination. Some centers advocate using a sedative
premedication to reduce fetal movements; however, as
technology improves and study times shorten, this will no
longer be required106.

Historically, fetal MRI techniques have been hampered
by the lack of ECG-triggering, which is typically used in
ex-utero cardiac MRI. However, experimental techniques
have been developed in the chick embryo which could
bypass this requirement107. Another concern is the
problem of temporal resolution, due to the time required
to acquire images, in the context of rapid fetal heart rate;

however, there are feasibility studies showing that modern
MRI sequences are able to acquire fetal cardiac MR94,104.

VENOUS FLOW ASSESSMENT

Analysis of the flow (by PW Doppler) within venous
channels contiguous with the RA (ductus venosus, inferior
vena cava, hepatic veins and pulmonary veins (DV, IVC,
HV and PV, respectively), excluding the umbilical vein
(UV) which is non-pulsatile from the end of the first
trimester108), gives a good approximation of the pressure
gradients within the atrium itself (Figure 9). The major
veins all exhibit a pulsatile flow waveform, representing
changes in pressure during the cardiac cycle, with forward
venous flow facilitated by low atrial pressures. Thus, at
those points within the cycle where atrial pressure is
lowest, forward venous flow will be maximal, and where
atrial pressure is highest, venous flow will be minimal
or even reversed. The normal waveform is the S-wave
(maximal forward flow corresponds to ventricular systole,
with rapid descent of the closed AV valves causing a drop
in atrial pressure), v-descent (ventricular relaxation with
rising AV valves, causing a temporary increase in atrial
pressure), D-wave (early ventricular diastole, with blood
rushing forward into the ventricles, causing a drop in
atrial pressure) and a-wave (atrial systole, or atrial kick
with pressure in atrium rising steeply)109.

The most significant change in venous Doppler with
cardiac dysfunction is reversal or absence of the a-wave,
which portends serious consequences in cardiac pump
function, with a subsequent daily risk of worsening fetal
wellbeing and intrauterine death109 (Figure 10). Reversal
of the a-wave in the DV in fetuses aged 11–14 weeks
has been shown to be associated with a 25% chance of
congenital heart defects110, and in high-risk fetuses aged
26–34 weeks, absent or reversed a-wave was associated
with a 63% risk of fetal or neonatal death44. This
finding is also indicative of Stage III in the Quintero
staging of TTTS111. Another venous waveform with
prognostic significance is pulsatile flow in the umbilical
vein, which has been shown to correlate with the

Figure 9 The fetal abdomen in sagittal plane, showing the sampling
sites and normal Doppler waveforms in the left hepatic vein (LHV),
inferior vena cava (IVC), ductus venosus (DV) and umbilical vein
(UV). (Reproduced with permission from Yagel et al.123).
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Figure 10 Abnormal Doppler waveforms in the: (a) umbilical vein
(UV), (b) ductus venosus (DV) and (c) inferior vena cava (IVC).
(a) An abnormal UV waveform in hemodynamically compromised
fetuses is characterized by the appearance of pulsations. (b) The DV
normally has forward blood flow throughout the cardiac cycle. In
compromised fetuses a drop in atrial systolic forward velocities is
observed. As central venous pressure increases, blood flow may be
reversed during atrial systole. (c) Abnormal IVC waveforms in
intrauterine growth restriction show a decrease in forward flow
during the S-wave (S) and D-wave (D) and accentuation of reversed
flow in the A-wave (annotated ‘a’). As the condition deteriorates,
the D-wave may be reversed. (Reproduced with permission from
Yagel et al.124).

presence of myocardial dysfunction112. Although the UV
is non-pulsatile under normal conditions, the presence
of pulsatile flow in the UV beyond the first trimester is
yet another sign of cardiac dysfunction. It is a marker
of progressive placental dysfunction113, and has been
shown to correlate with elevated troponin levels in the
neonate114.

Various indices of venous flow profile have been
devised. One of these, the pulsatility index for veins, is the
peak systolic velocity minus the peak diastolic velocity,
divided by the time-averaged maximum velocity. In fetuses
with IUGR, a raised ductus venosus pulsatility index for
veins (DV-PIV) is indicative of a ten-fold acceleration
of deterioration113. In a study examining neonates with
elevated levels of troponin or N-terminal pro-atrial
natriuretic peptide (NT-pro-ANP), markers of myocardial
damage and dysfunction, respectively, elevated PIV in the

fetal DV, left hepatic vein and IVC was shown to correlate
with elevated umbilical artery NT-pro-ANP in specimens
drawn immediately after delivery. The PIV was also
highest in the subgroup of neonates with elevated levels of
both troponin and NT-pro-ANP115. A more recent study
by the same group showed that N-terminal pro-brain
natriuretic peptide (NT-pro-BNP), another marker of
cardiac dysfunction, was also correlated with elevated
PIV116.

Another way of examining cardiac function, as
expressed in the venous system, is by analysis of the
vessel pressure waveform. Mori et al. have shown that
one can measure the changes in vessel diameter, providing
a waveform that is equivalent to the central venous
pressure waveform, with ‘A’ and ‘V’ peaks, and ‘X’
and ‘Y’ troughs117. Elements of the morphology of the
waveform, in particular shortening of the A-X-V time and
reduction in the X nadir, can be indicative of fetal cardiac
dysfunction118.

The utility of fetal venous Doppler examination lies in
its predictive powers. Pathological changes in the venous
Doppler results in growth-restricted fetuses precede
changes in the cardiotocogram and biophysical profile,
in some cases by a period of weeks119,120. Although there
remains controversy among obstetricians regarding the
benefits of early vs. delayed delivery in IUGR, Doppler
studies (including arterial) are reported to be the most
accurate non-invasive modality for assessing placental
function, and therefore provide the information on the
basis of which these decisions can be taken121.

COMMENT

The focus of ultrasound scanning is shifting from the
purely descriptive towards a functional, quantitative
modality122. This results from both technological advance
in ultrasound machines as well as in the progress of
dedicated examiners. The techniques described above
are all designed to establish markers of fetal cardiac
dysfunction, in the absence of an accepted reference
standard. Essentially, they all suffer from the shortcoming
that, while they may strongly imply the presence of
cardiac dysfunction, they do not necessarily pinpoint
the etiology or causal mechanism. These modalities
are perhaps most appropriate when there is a known
pathology that is being followed. Many of the modalities
have been tested extensively on the LV, but less so on
the right. Conversely, some, such as short-axis shortening
fraction, are used for analysis of the RV, even though
anatomically and geometrically they are less applicable to
that ventricle.

The ideal test of fetal cardiac function should be
applicable mainly to the RV which, as mentioned above,
is the dominant ventricle in the fetal cardiovascular
system; it should be accessible using standard ultrasound
machines, without relying on offline post-processing; and
it should be able to predict cardiac dysfunction before
there are clinical signs of fetal distress. It would seem
to the authors that simple modalities such as M-mode
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annular displacement, precordial venous Doppler flow
assessment and MPI are the only ones to have truly
crossed the translational divide between the experimental
and clinical, and that can be recommended for clinical
practice.
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