CERPO

Centro de Referencia Perinatal Oriente

Facultad de Medicina, Universidad de Chile

SINDROME TREACHER COLLINS

Dra. Francisca del Pozo Guerrero
Programa formación Ginecología -Obstetricia
Universidad de Chile
Febrero 2021

INTRODUCCIÓN

Descrito por primera vez por Thompson en 1846 y bien definido por Edward Treacher Collins en el año 1900.

Sindrome Treacher Collins (TCS) es un trastorno del desarrollo craneofacial, caracterizado por malformaciones faciales bilaterales y simétricas: displasia maxilar, cigomática y mandibular.

→ Alteración en la migración de las células de la cresta neural al 1º arco branquial (TCS vs PR).

Principalmente autosómico dominante, con un grado variable de penetrancia.

 \rightarrow TCS1, TCS2 y TCS3.

^{1.} Edward P Buchanan, MD. (May 01, 2018.). Syndromes with craniofacial abnormalities. UpToDate

^{2.} Trainor, P. A. (2010). Craniofacial birth defects: The role of neural crest cells in the etiology and pathogenesis of Treacher Collins syndrome and the potential for prevention. American Journal of Medical Genetics Part A, 152A(12), 2984–2994.

EPIDEMIOLOGÍA

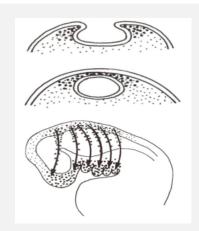
- 1/25.000 1/50.000 RN vivos
- Sin diferencia significativa por sexo
- 40% herencia autosómica dominante*
- 60% esporádico
- → 78-93% TCS1 (mutaciones TCOF1)
- →8% TCS2 y TCS3 (Mutaciones POLR1C y POLR1D)

El defecto genético subyacente aún se desconoce en aproximadamente el 10 % de los pacientes con TCS.

^{1.} Dixon J, Trainor P, Dixon MJ. Treacher Collins syndrome. Orthod Craniofac Res. 2007;10(2):88.

Miguel Octavio Sosa. Diagnóstico fetal de las disostosis mandibulo faciales. Rev. Latin. Perinat. 2016, 19(1): (53),

Guo, P., Pan, B., Jiang, H., Yang, Q., He, L., & Lin, L. (2020). Prevention Methods for Treacher Collins Syndrome: A Systematic Review. International Journal of Pediatric Otorhinolaryngology, 110062.


GENÉTICA

TCS1: Autosómico dominante. Alteración del gen TCOF1 en el cromosoma 5 (5q31.3-q33.3)

- TCOF1 codifica la fosfoproteína Treacle,

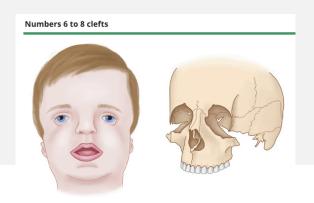
 transcripción de ARNr y biogénesis ribosómica,
 tiene su peak de expresión en las células de la cresta neural de los arcos braquiales.
- Haploinsuficiencia de TCOF1: agotamiento de los precursores de las células de la cresta neural por lo que menos células migrarán hacia el complejo craneofacial en desarrollo.
 - *Via apoptótica de p53: muerte células neuroepiteliales

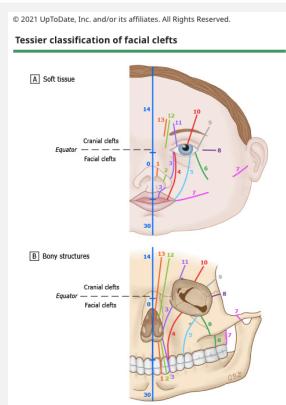
^{1.} Valdez, B. C., Henning, D., So, R. B., Dixon, J., & Dixon, M. J. (2004). The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor. Proceedings of the National Academy of Sciences, 101(29), 10709–10714.

^{2.} Shows, K. H., & Shiang, R. (2008). Regulation of the Mouse Treacher Collins Syndrome Homolog (Tcof1) Promoter Through Differential Repression of Constitutive Expression. DNA and Cell Biology, 27(11), 589–600.

GENÉTICA

- TCS2: Autosómico dominante y autosómico recesivo: Mutaciones del gen Polimerasa I ARN subunidad D (POLR1D) ubicado en el cromosoma 13 (13q12.2)
- TCS3: Autosómico recesivo: mutaciones heterocigotas del gen Polimerasa I ARN subunidad C (POLR1C) ubicado en el cromosoma 6 (6p22.3)


PATOGENIA


La disfunción de las células de la cresta neural, impide que los tejidos craneofaciales (cartilago, hueso y tejido conectivo) se desarrollen correctamente.

Hendidura entre las posiciones 6-8 de la clasificación Tessier: Penetración mesodérmica insuficiente

- → Hipoplasia o aplasia del hueso cigomático.
- → Alteraciones menores en tejidos blandos (oreja).

Bilateral clefts numbers 6, 7, and 8 as seen in Treacher-Collins syndrome with absence of the zygomatic bone causing clefting where the maxilla, temporal, and frontal bones conjoin with the zygomatic bone.

MANIFESTACIONES CLÍNICAS

OCULARES

- Ojos con inclinación antimongoloide
- Colobomas
- Pestañas ausentes en 2/3 mediales del parpado inferior

FACIALES-MANDIBULARES

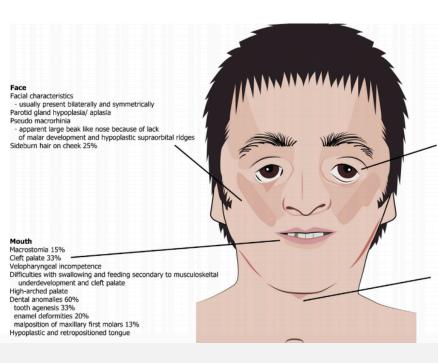
- Retrognatia
- Micrognatia
- Perfil convexo
- Hipoplasia malar
- Hendidura cigomática
- Paladar hendido

ÓTICAS -AUDITIVAS

- Anomalías del oído externo
- Microtia
- Hipoacusia de conducción

- ** Puede presentar estrechamiento de vias respiratorias o alteración de la deglución.
- ** Esperanza de vida normal
- ** Sin alteración del neurodesarrollo

Table 2. Classic Features of Treacher Collins Syndrome


Classic Feature		% (n) of Affected Individuals w/Feature			
		Vincent et al [2016]	Teber et al [2004]	Splendore et al [2000]	
Very frequent	Downward-slanting palpebral fissures	99% (76/77)	100% (35/35)	89%	
	Malar hypoplasia / hypoplasia of zygomatic complex	97% (76/78)	97% (34/35)	81%	
	Conductive hearing loss	92% (69/75)	83% (25/30)		
	Mandibular hypoplasia / micrognathia	88% (69/78)	91% (32/35)	78%	
Frequent	Atresia of external ear canal	71% (46/65)	68% (23/34)		
	Microtia	70% (55/79)	71% (25/35)	77%	
	Coloboma (notching) of the lower lid	63% (46/73)	54% (19/35)	69%	
	Delayed speech development		57% (16/28)		
	Asymmetry	52% (34/65)			
	Preauricular hair displacement	49% (25/51)	24% (8/33)		
Rare	Nasogastric tube or gastrostomy in neonates	28% (17/60)			
	Cleft palate	21% (15/70)	33% (11/33)	28%	
	Intubation or tracheostomy in neonates	18% (12/65)	12% (4/34)		
	Choanal stenosis/atresia	13% (8/64)	25% (8/32)		
	Cardiac malformation	11% (7/65)			

MANIFESTACIONES CLÍNICAS

External auditory canals bilateral stenosis/ atresia

Extra ear tags and/or fistulas

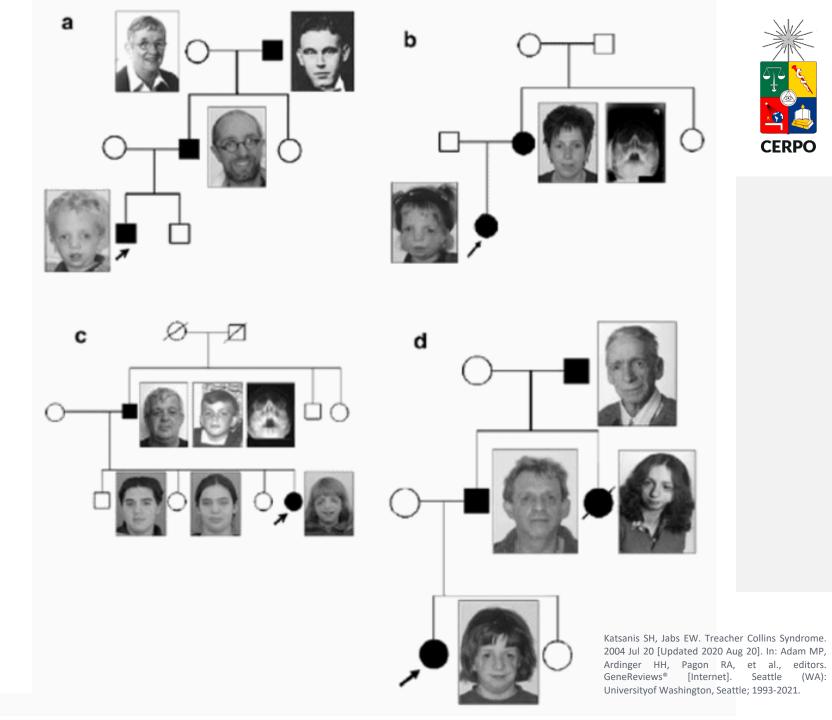
Eyes/ eyelids

Lower lid eyelashes aplasia Short and downslanting palpebral fissures Notched upper/ lower eyelids (coloboma) Euryblepharon

Airway problems secondary to mandibular hypoplasia Pharyngeal hypoplasia Choanal atresia Tracheo-oesophageal fistula Small or obstructed nasal passages

> Middle ear Conductive hearing loss

Ossicular dysmorphism


monopodal stapes ankylosis of stapes

Neurological Normal intelligence

Conductive hearing loss Vision loss associated with strabismus, refractive errors and anisometropia Impaired vision (underdeveloped lateral orbit and extraocular muscles)

hypoplasia/ agenesis of malleus and incus **External ears** Small (or even absent), rotated, low set pinnas

Cobb, A. R. M., Green, B., Gill, D., Ayliffe, P., Lloyd, T. W., Bulstrode, N., & Dunaway, D. J. (2014). The surgical management of Treacher Collins syndrome. British Journal of Oral and Maxillofacial Surgery, 52(7), 581-589

CLASIFICACIÓN

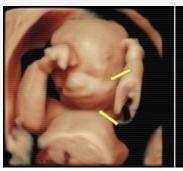
- Completa: todas las características
- Incompleta: anomalías menores de ojos, mandíbula, hueso cigomático y óticas.
- Abortiva: pseudocoloboma de párpado inferior e hipoplasia del hueso cigomático
- Unilateral: anomalías en 1 solo lado de la cara
- Atípica: combinado con otras anomalías

^{1.} Franceschetti A, Klein D. The mandibulofacial dysostosis; a new hereditary syndrome. Acta Ophthalmol 1949;27:143e224.

^{2.} Kubo, S., Horinouchi, T., Kinoshita, M., Yoshizato, T., Kozuma, Y., Shinagawa, T., & Ushijima, K. (2019). Visual diagnosis in utero: Prenatal diagnosis of Treacher-Collins syndrome using a 3D/4D ultrasonography. Taiwanese Journal of Obstetrics and Gynecology, 58(4), 566–569.

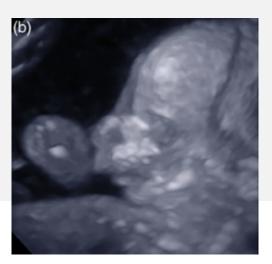
¿DIAGNÓSTICO PRE NATAL?

- Mayor riesgo de distress respiratorio neonatal (lengua obstruye la vía aérea, VAD), su detección prenatal permite la presencia de equipo multidisciplinario preparado en el momento del parto. (eventual necesidad de EXIT).
- Preparación y educación a los padres
- Acompañamiento y apoyo psicológico



¿DIAGNÓSTICO PRENATAL?

- Ecografía bidimensional (2DUS) (>20 semamanas) Polihidramnios, micrognatia, retrognatia, hendiduras palpebrales y orejas de implantación baja.
- Apoyo con Ecografía 3D y 4D


**Anomalías de la mandíbula (micro/retrognatia) suelen definirse subjetivamente en el estudio ecográfico prenatal

The fetal mandible: a 2D and 3D sonographic approach to the diagnosis of retrognathia and micrognathia

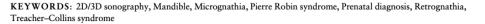
D. ROTTEN*, J. M. LEVAILLANT†, H. MARTINEZ‡, H. DUCOU LE POINTE\ and É. VICAUT¶

KEYWORDS: 2D/3D sonography, Mandible, Micrognathia, Pierre Robin syndrome, Prenatal diagnosis, Retrognathia, Treacher–Collins syndrome

Objetivo: Definir parámetros que permitan el diagnóstico objetivo de anomalías de la posición y / o tamaño de la mandíbula fetal en el útero.

1997-2000 \rightarrow 371 fetos normales, 8 T21, 18 CLP y 12 con anomalías mandibulares.

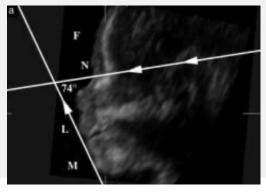
_		GA	IFA	MD	MX		Clinical	
Case	Syndrome	(weeks)	(°)	(mm)	(mm)	MD/MX	stage	Associated anomalies
1	Isolated PRS	22	45	25	23	1.09	III	
2	Isolated PRS	22	40	30	30	1.00	III	
3	Isolated PRS	23	38	18	29	0.62	I	
4	Isolated PRS	24	45	27	36	0.75	I–II	
5	Isolated PRS	27	45	31	26	1.19	II–III	
6	PRS, 1-17 trs.	23	46	31	33	0.94	NA	Diaphragmatic hernia
7	PRS, trisomy 18	22	45	20	31	0.65	NA	Rocker bottom feet, wide anterior fontanelle
8	PRS, trisomy 22	20	35	20	28	0.71	NA	
9	Treacher-Collins	22	28	14	18	0.78	NA	
10	Treacher-Collins	22	40	17	27	0.63	NA	
11	Treacher-Collins	22	37	12	30	0.40	II–III	Inferior labial cleft, agenesis of left hemimandible
12	PAAFD	24	35	16	30	0.53	NA	

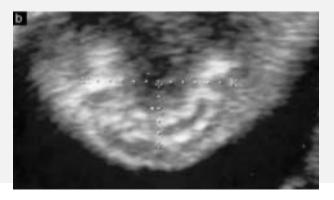

All twelve cases had cleft lip and palate and the morphological grade for all twelve was 'severe'. GA, gestational age; IFA, inferior facial angle; MD, mandible width; MX, maxilla width; PRS, Pierre Robin sequence; trs., translocation; PAAFD, postaxial acrofacial dysostosis; NA, not applicable.

^{*}Department of Gynecology and Obstetrics, Delafontaine Hospital, Saint-Denis, †Department of Gynecology and Obstetrics, Armand-Brillard Hospital, Nogent-sur-Marne, †Department of Maxillofacial and Plastic Pediatric Surgery and \$Department of Medical Imaging, Armand-Trousseau Hospital and \$Department of Biophysics, Fernand-Widal Hospital, Paris, France

The fetal mandible: a 2D and 3D sonographic approach to the diagnosis of retrognathia and micrognathia

D. ROTTEN*, J. M. LEVAILLANT†, H. MARTINEZ‡, H. DUCOU LE POINTE\ and É. VICAUT¶


*Department of Gynecology and Obstetrics, Delafontaine Hospital, Saint-Denis, †Department of Gynecology and Obstetrics, Armand-Brillard Hospital, Nogent-sur-Marne, †Department of Maxillofacial and Plastic Pediatric Surgery and §Department of Medical Imaging, Armand-Trousseau Hospital and ¶Department of Biophysics, Fernand-Widal Hospital, Paris, France



Ecografía en fetos entre 18-28 semanas

Evaluación subjetiva + complemento con 3 parámetros: Angulo facial inferior, ancho mandibular y ancho del maxilar.

IFA MD MX

Rotten, D., Levaillant, J. M., Martinez, H., Le pointe H. Ducoule, & Vicaut, É. (2002). The fetal mandible: a 2D and 3D sonographic approach to the diagnosis of retrognathia and micrognathia. Ultrasound in Obstetrics and Gynecology, 19(2), 122–130.

RESULTADOS IFA:

371 fetos sin patología: Valor medio IFA entre 18-28 sem: 65.5 (8.13 DS), sin cambios por EG

Retrognatia: IFA < 50º (49.2º +- 2DS)

12 Fetos con anomalía mandibular: Todos IFA <50º

S 100%, E 99%, VPP 75%, VPN 100%

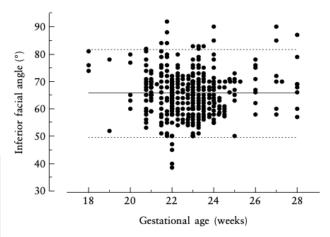


Figure 5 Value distribution of inferior facial angle as a function of gestational age in normal fetuses. (Measured in 371 fetuses with no known pathology.) Solid line, mean; dotted lines, ± 2 standard deviations.

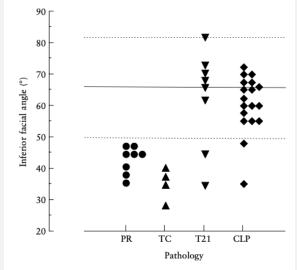
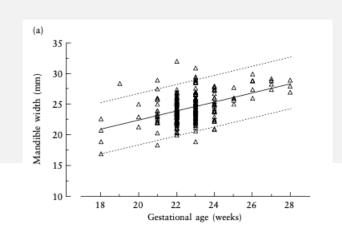
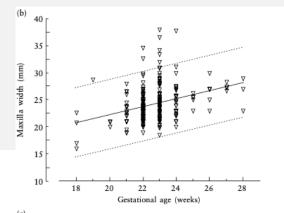
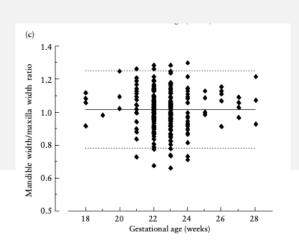


Figure 6 Distribution of inferior facial angle in pathological cases. PR, Pierre Robin sequence or complex (n = 8); TC, Treacher–Collins syndrome (n = 3) and postaxial acrofacial dysostosis (n = 1); T21, Down syndrome (n = 8); CLP, cleft lip and palate (n = 18). Solid line, mean; dotted lines, ± 2 standard deviations of the normal population.


RESULTADOS MD/MX:



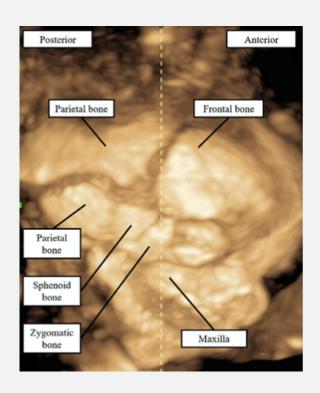

245 fetos sin patología conocida: Ancho de mandíbula y del maxilar aumentaron según edad gestacional entre las 18-28 semanas, sin cambios en la relación MD/MX.

Micrognatia: MD/MX < 0.785

**Sin relación significativa entre retrognatia y micrognatia: entidades distintas

Imaging of the Fetal Zygomatic Bone

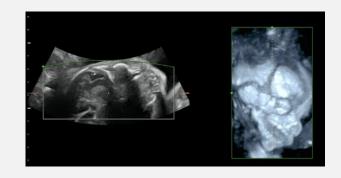
A Key Role in Prenatal Diagnosis of First Branchial Arch Syndrome


Yinon Gilboa, MD, Reuven Achiron, MD, Zvi Kivilevitch, MD, Alyssa Hochberg, MD, Ron Bardin, MD , Yaron Zalel, MD, Sharon Perlman, MD .

Estudio de cohorte prospectivo (2020)

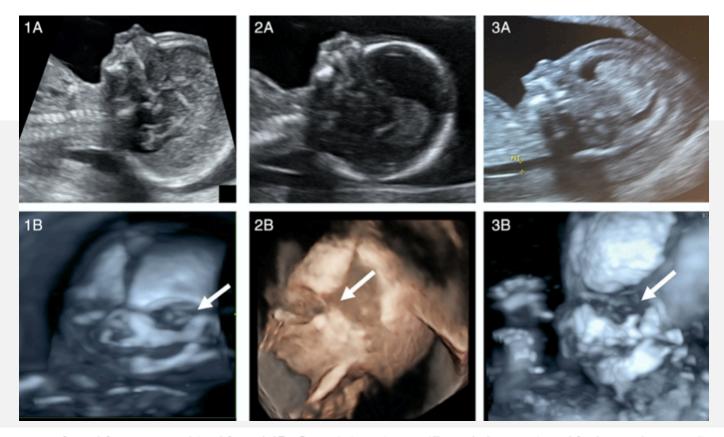
Objetivo: Describir la visualización del hueso cigomático fetal con ecografía 3D y evaluar su aplicación en fetos con características sugerentes de síndrome del primer arco branquial (Treacher Collins vs Pierre Robin)

- → 50 casos fetos anatómica normales entre las 12 y 24 semanas.
- → 17 casos: fetos derivados por sospecha de sd. Primer arco branquial.


Imaging of the Fetal Zygomatic Bone

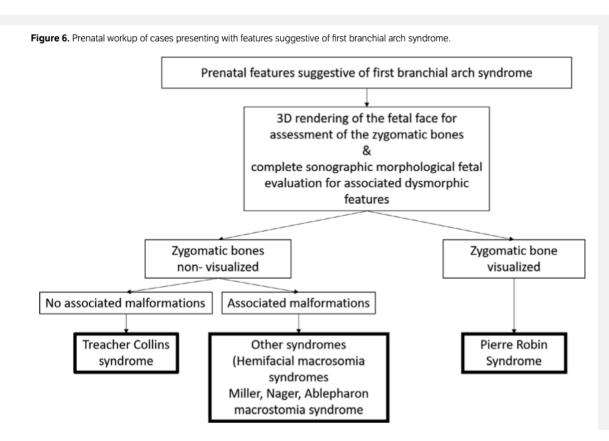
A Key Role in Prenatal Diagnosis of First Branchial Arch Syndrome

Yinon Gilboa, MD, Reuven Achiron, MD, Zvi Kivilevitch, MD, Alyssa Hochberg, MD, Ron Bardin, MD ⁽ⁱ⁾, Yaron Zalel, MD, Sharon Perlman, MD ⁽ⁱ⁾


La obtención de imágenes del hueso cigomático se realizó mediante un renderizado tridimensional aplicado en paralelo a la oreja y la órbita

Gilboa, Y., Achiron, R., Kivilevitch, Z., Hochberg, A., Bardin, R., Zalel, Y., & Perlman, S. (2020). Imaging of the Fetal Zygomatic Bone. Journal of Ultrasound in Medicine.

Figure 5. Three cases referred for retrognathia. **1A** and **1B**, Case 1: imaging at 17 weeks' gestation. **1A** shows the receding chin. **1B** shows the fetal zygomatic bone (arrow). The etiology for the retrognathia in this case was Pierre Robin sequence. The neonate was born at term in good condition. **2A** and **2B**, Case 2: imaging at 15 weeks' gestation. **2A** shows the receding chin. **2B** shows nonvisualization of the fetal zygomatic bone (arrow). The etiology for the retrognathia in this case was Treacher Collins syndrome. After thorough prenatal counseling, the parents elected termination of pregnancy. **3A** and **3B**, Case 3: imaging at 13 weeks' gestation. **3A** shows the receding chin. **3B** shows nonvisualization of the fetal zygomatic bone (arrow). The etiology for the retrognathia in this case was Treacher Collins syndrome. After thorough prenatal counseling, the parents elected termination of pregnancy.


RESULTADOS - CONCLUSIONES

Casos derivados por sospecha sd 1º arco (17):

- 11 microretrognatia
- 3 microtia
- 3 casos de vestigios preauriculares y faciales

El hueso cigomático no se visualizó en 2 casos (Sd. Treacher Collins)

RESONANCIA MAGNÉTICA FETAL

CERPO

- Evaluar obstrucción vía aérea superior
- Glosoptosis
- Evaluación vía aérea inferior
- Evaluación y caracterización de anomalías faciales fetales

Fig. 4. Fetal magnetic resonance image of fetal sagittal section at 33 weeks' gestation showing glossoptosis and obstruction of the upper air way tract and intact lower air way (white arrow).

MANEJO PERINTAL

- Búsqueda de otras anomalías estructurales
- Estudio genético
- Control ecográfico c/4 semanas: evaluar crecimiento fetal y liquido amniotico (eventual amniodrenaje si acortamiento cervical).
- Programar interrupción previa coordinación con equipo neonatología.
 - → Manejo de vía aérea precozmente
 - → Centro con UCI neonatal.

ESTUDIO GENÉTICO PRENATAL

- Asesoramiento genético: La transmisión es principalmente autosómica dominante, penetrancia del 90% y una expresividad intra y extrafamiliar variable. puede ser recesivo en TCS2 y TCS3 o esporádico.
- El asesoramiento genético se complica por la expresión variable de la enfermedad y debe discutirse con un equipo multidisciplinario de diagnóstico prenatal.

TRATAMIENTO

Generalmente requieren reiterados procedimientos quirúrgicos – reconstructivos.

Período neonatal: vía aérea y protección ocular

- En caso de trastornos para la alimentación o vías respiratorias, realizar cirugía post natal y/o dentro de los primeros años de vida. (Glosopexia, traqueotomía, Distracción mandibular osteogénica, corrección de labio leporino/paladar hendido, gastrostomía).
- Cirugía reconstructiva idealmente >7 años.

Fig. 5. Neonatal face at birth showing micrognathia, symmetrical downslantin palpebral fissures, macrostomia and microtia.

^{1.} Edward P Buchanan, MD. Syndromes with craniofacial abnormalities. May 01, 2018. UpToDate

^{2.} Kubo, S., Horinouchi, T., Kinoshita, M., Yoshizato, T., Kozuma, Y., Shinagawa, T., & Ushijima, K. (2019). Visual diagnosis in utero: Prenatal diagnosis of Treacher-Collins syndrome using a 3D/4D ultrasonography. Taiwanese Journal of Obstetrics and Gynecology, 58(4), 566–569

TRATAMIENTO

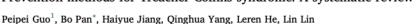
- 1) Periodo neonatal: Asegurar vía aérea y protección ocular
- 2) Infancia: Apoyar alimentación, desarrollo neurológico, audición y habla
- 3) Temprano: Prevenir alteración de crecimiento y brindar apoyo psicosocial, idealmente reconstrucción oído previo a ingreso a colegio
- **4) Tardío:** Corrección definitiva del tejido blando facial y forma esquelética despues de que el crecimiento se haya detenido

DIAGNÓSTICO DIFERENCIAL

The characteristics and differentia	l diagnosis of the conge	nital anomalies with micrognathia.
-------------------------------------	--------------------------	------------------------------------

	Eyes/Eyelids	Ears	Cleft lip/palate	Other findings of the face	Fingers/Limbs	Others
Treacher-Collins syndrome	Downslanting palpebral fissures Coloboma	Low set microtia	Cleft palate	Malar hypoplasia Macrostomia	-	-
Nager syndrome	Downslanting palpebral fissures	Microtia	Cleft palate	Malar hypoplasia	Asymmetrical pre-axial limb anomalies (Anomalies of thumb, Radial hypoplasia or aplasia) Lower limb involvement is rare.	_
Miller syndrome	Downslanting palpebral fissures Coloboma	Cupped ear	Cleft lip and palate	_	Symmetrical post-axial limb anomalies (Defect of the 4th and/or 5th finger)	Excessive vertebra
Goldenhar syndrome	Hemifacial macrosomia Low lid epibulbar dermoid, Coloboma	Microtia Periauricular tag	Cleft lip and/or palate	Transverse facial cleft	_	Scoliosis (Hemivertebrae or Vertebral hypoplasia) Supernumerary ribs Cardiac and renal involvements
Pierre Robin sequence	_	-	U-shaped cleft palate	_	-	Anomalies are limited to face.

Contents lists available at ScienceDirect


International Journal of Pediatric Otorhinolaryngology

journal homepage: www.elsevier.com/locate/ijporl

Review Article

Prevention methods for Treacher Collins syndrome: A systematic review

The Seventh Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Revisión sistemática, Prevención TCS

- → 65 publicaciones hasta Noviembre 2019.
- → 7 artículos seleccionados: métodos para prevenir malformaciones craneofaciales relacionadas con TCS.
- 4 artículos utilizaron métodos de prevención relacionados con la inhibición de p53
- 3 artículos relacionados con la exclusión del daño del ADN inducido por estrés oxidativo

Contents lists available at ScienceDirect

International Journal of Pediatric Otorhinolaryngology

journal homepage: www.elsevier.com/locate/ijporl

Review Article

Prevention methods for Treacher Collins syndrome: A systematic review

Peipei Guo¹, Bo Pan*, Haiyue Jiang, Qinghua Yang, Leren He, Lin Lin

The Seventh Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Bloqueo p53, genético o farmacológico, reduciría apoptosis neuroepitelial y reestablecería población migrante NCC.

→ Bloqueo supresión tumoral

Administración de un antioxidante podría disminuir el daño producido por estrés oxidativo en neuroepitelio y rescatar fenotipo TCS

Table 1
The characteristics and details of included studies. TCS = Treacher Collins syndrome; MO = morpholino; NAC=N-acetyl cysteine.

Authors/year	Animal model	Intervention	Phenotype	Conclusion
Jones et al., /2008	Tcof1 ^{+/-} Mouse	pifithrin-α at 2.2 mg per kg once daily from E6.5 to E8.5	minor recovery	p53 inhibition either pharmacologically or genetically
		pifithrin- α at 2.2 mg per kg once daily from E6.5 to E17.5	partial recovery	rescued TSC-1 phenotype in a dose-dependent manner
		Tcof1 ^{+/-} Trp53 [±] Tcof1 ^{+/-} Trp53 ^{-/-}	50% normal 100% normal	
De peralta et al., /2016	tcof1 MOs Zebrafish	low level of <i>cnbp</i> overexpression	nearly full recovery	cnbp overexpression rescued TCS phenotype in a dose-dependent manner
		high level of <i>cnbp</i> overexpression	significant recovery	
Lau et al., /2016	polr1c MOs Zebrafish	polr1c MOs/tp53 ^{M241K}	53.3% normal; 31.7% mild; 15% severe	p53 inhibition rescued the TCS-3 phenotype
Noack et al., /2016	polr1c ^{-/-} and polr1d ^{-/-} Zebrafish	pob1c ^{-/-} /\$53 [±]	19% normal; 49% mild; 32% severe	p53 inhibition rescued the TCS-2 and TCS-3 phenotype in a dose- dependent manner
		polr1c ^{-/-} /φ53 ^{-/-}	62% normal; 28.5% mild; 9.5% severe	
		polr1d ^{-/-} /tp53 [±]	24% normal; 54% mild; 22% severe	
		polr1d ^{-/-} /tp53 ^{-/-}	35% normal; 65% mild	
Sakai et al., /2016	<i>Tcof1</i> ^{+/−} mouse	NAC at 150 mg per kg once daily from E5.5 to E10.5	30.7% normal; 38.5% mild; 30.7% severe	maternal antioxidant dietary supplementation provided an avenue for TCS-1 prevention
		NAC at 150 mg per kg once daily from E5.5 to E17.5	30.9% normal; 45.0% mild; 25.0% severe	
Calo et al., /2018	tcof1 MOs Xenopus	DDX21 mRNA overexpression	significant recovery	overexpression of <i>DDX2</i> 1 mRNA rescued TCS-1 phenotype
Rosas et al., /2019	tcof1 MOs Zebrafish	Bortezomib 0.5 μM MG132 5 μM	significant recovery significant recovery	proteasome inhibitors provided an avenue for TCS-1 prevention

CONCLUSIONES - PROYECCIONES

- Sindrome Treacher Collins es una condición poco frecuente, la gravedad de las manifestaciones clínicas varía notablemente caso a caso, entre familias y dentro de éstas.
- Importante el diagnóstico prenatal para informar a los padres y contar con un equipo multidisciplinario preparado en el parto.
- Tratamiento principal en RN es asegurar la vía aérea, posteriormente cirugía reconstructiva.
- Métodos de prevención en estudio, que podrían ayudar a disminuir la morbilidad asociada a TCS.

CERPO

Centro de Referencia Perimatal Oriente

Facultad de Medicina, Universidad de Chile

SINDROME TREACHER COLLINS

Dra. Francisca del Pozo Guerrero
Programa Formación Ginecología - Obstetricia
Universidad de Chile
Marzo 2021